version 1.0
task assemble {
input {
File reads_unmapped_bam
File trim_clip_db
Int spades_n_reads = 10000000
Int? spades_min_contig_len
String? spades_options
Boolean always_succeed = false
# do this in two steps in case the input doesn't actually have "taxfilt" in the name
String sample_name = basename(basename(reads_unmapped_bam, ".bam"), ".taxfilt")
Int? machine_mem_gb
String docker = "quay.io/broadinstitute/viral-assemble:2.5.1.0"
}
parameter_meta{
reads_unmapped_bam: {
description: "Unaligned reads in BAM format.",
patterns: ["*.bam"],
category: "required"
}
trim_clip_db: {
description: "Trimmomatic clip database.",
category: "required"
}
spades_n_reads: {
description: "Subsample reads threshold prior to assembly. Default set to 10000000",
category: "required"
}
spades_min_contig_len: {
description: "Minimum length of output contig.",
category: "other"
}
spades_options: {
description: "Display additional options to pass the SPAdes assembler.",
category: "other"
}
always_succeed: {
description: "In the event that assembly fails for any reason, output an empty contigs file instead of an error code.",
cateogory: "other"
}
contigs_fasta: {
description:"De novo RNA-seq assembly of contigs with the SPAdes assembler in FASTA format.",
patterns: ["*.fasta"],
category: "other"
}
subsampBam:{
description: "Subsample your reads to speed up the process of the run.",
category: "other"
}
subsample_read_count:{
description: "Number of reads that your subsample contains.",
category: "other"
}
}
Int disk_size = 375
command {
set -ex -o pipefail
# find 90% memory
mem_in_mb=$(/opt/viral-ngs/source/docker/calc_mem.py mb 90)
mem_in_gb=$(/opt/viral-ngs/source/docker/calc_mem.py gb 90)
assembly.py --version | tee VERSION
assembly.py assemble_spades \
~{reads_unmapped_bam} \
~{trim_clip_db} \
~{sample_name}.assembly1-spades.fasta \
~{'--nReads=' + spades_n_reads} \
~{true="--alwaysSucceed" false="" always_succeed} \
~{'--minContigLen=' + spades_min_contig_len} \
~{'--spadesOpts="' + spades_options + '"'} \
--memLimitGb $mem_in_gb \
--outReads=~{sample_name}.subsamp.bam \
--loglevel=DEBUG
samtools view -c ~{sample_name}.subsamp.bam | tee subsample_read_count >&2
}
output {
File contigs_fasta = "~{sample_name}.assembly1-spades.fasta"
File subsampBam = "~{sample_name}.subsamp.bam"
Int subsample_read_count = read_int("subsample_read_count")
String viralngs_version = read_string("VERSION")
}
runtime {
docker: docker
memory: select_first([machine_mem_gb, 63]) + " GB"
cpu: 4
disks: "local-disk " + disk_size + " LOCAL"
disk: disk_size + " GB" # TES
dx_instance_type: "mem1_ssd1_v2_x8"
maxRetries: 2
}
}
task select_references {
meta {
description: "Evaluate reference genomes based on ANI similarity to provided contigs. This will emit an ANI-rank-ordered table of references and will also cluster reference genomes based on ANI similarity to each other, picking only the top hit (based on ANI similairty to contigs) of each cluster. Default parameters for skani are tuned for viral genomes (-m 50 -s 85 --no-learned-ani --slow --robust --no-marker-index). This tool can tolerate a large number of reference genomes as input."
}
input {
Array[File] reference_genomes_fastas
File contigs_fasta
Int? skani_m
Int? skani_s
Int? skani_c
Int? skani_n
String docker = "quay.io/broadinstitute/viral-assemble:2.5.1.0"
Int machine_mem_gb = 4
Int cpu = 2
Int disk_size = 100
}
String contigs_basename = basename(basename(contigs_fasta, '.fasta'), '.assembly1-spades')
command <<<
set -e
# run skani, find top hits, cluster references
assembly.py skani_contigs_to_refs \
"~{contigs_fasta}" \
"~{sep='" "' reference_genomes_fastas}" \
"~{contigs_basename}.refs_skani_dist.full.tsv" \
"~{contigs_basename}.refs_skani_dist.top.tsv" \
"~{contigs_basename}.ref_clusters.tsv" \
~{'-m ' + skani_m} \
~{'-s ' + skani_s} \
~{'-c ' + skani_c} \
~{'-n ' + skani_n} \
--loglevel=DEBUG
# create basename-only version of ref_clusters output file
# create tar-bundles of ref_clusters fastas, since Cromwell doesn't delocalize files in a Array[Array[File]] = read_tsv
python3 <<CODE
import os, os.path, shutil, tarfile
os.mkdir("clusters")
with open("~{contigs_basename}.ref_clusters.tsv", 'r') as inf:
with open("~{contigs_basename}.ref_clusters.basenames.tsv", 'w') as outf:
for line in inf:
fnames = line.strip().split('\t')
assert fnames
basefnames = list([f[:-6] if f.endswith('.fasta') else f for f in map(os.path.basename, fnames)])
outf.write('\t'.join(basefnames) + '\n')
with tarfile.open(os.path.join("clusters", basefnames[0] + "-" + str(len(basefnames)) + ".tar.gz"), "w:gz") as tarball:
for f in fnames:
shutil.copy(f, ".")
tarball.add(os.path.basename(f))
os.unlink(os.path.basename(f))
CODE
# create top-hits output files
cut -f 1 "~{contigs_basename}.refs_skani_dist.top.tsv" | tail +2 > TOP_FASTAS
for f in $(cat TOP_FASTAS); do basename "$f" .fasta; done > TOP_FASTAS_BASENAMES
>>>
output {
Array[File] matched_reference_clusters_fastas_tars = glob("clusters/*.tar.gz")
Array[Array[String]] matched_reference_clusters_basenames = read_tsv("~{contigs_basename}.ref_clusters.basenames.tsv")
Array[String] top_matches_per_cluster_basenames = read_lines("TOP_FASTAS_BASENAMES")
Array[File] top_matches_per_cluster_fastas = read_lines("TOP_FASTAS")
File skani_dist_full_tsv = "~{contigs_basename}.refs_skani_dist.full.tsv"
File skani_dist_top_tsv = "~{contigs_basename}.refs_skani_dist.top.tsv"
}
runtime {
docker: docker
memory: machine_mem_gb + " GB"
cpu: cpu
disks: "local-disk " + disk_size + " LOCAL"
disk: disk_size + " GB" # TESs
dx_instance_type: "mem1_ssd1_v2_x2"
preemptible: 2
maxRetries: 2
}
}
task scaffold {
input {
File contigs_fasta
File reads_bam
Array[File]+ reference_genome_fasta
String aligner="muscle"
Float? min_length_fraction
Float? min_unambig
Int replace_length=55
Boolean allow_incomplete_output = false
Int? skani_m
Int? skani_s
Int? skani_c
Int? nucmer_max_gap
Int? nucmer_min_match
Int? nucmer_min_cluster
Int? scaffold_min_contig_len
Float? scaffold_min_pct_contig_aligned
Int? machine_mem_gb
String docker="quay.io/broadinstitute/viral-assemble:2.5.1.0"
# do this in multiple steps in case the input doesn't actually have "assembly1-x" in the name
String sample_name = basename(basename(contigs_fasta, ".fasta"), ".assembly1-spades")
}
parameter_meta {
reads_bam: {
description: "Reads in BAM format.",
patterns: ["*.bam"],
category: "required"
}
contigs_fasta: {
description: "De novo contigs in fasta format",
patterns: ["*.fasta"],
category: "required"
}
reference_genome_fasta: {
description: "Reference genomes to scaffold against. Multiple reference genomes may be provided, one per fasta file, and this task will attempt each of them and select the reference that produces the most complete output. Each reference genome should be in a single fasta file with all segments/chromosomes contained in the file as separate sequences in the correct order. Output genomes from this task will contain the same number of sequences as the selected input reference genome, and will be emitted in the same order.",
patterns: ["*.fasta"],
category: "required"
}
aligner: {
description: "Alignment tools used to align the reference sequence to aligned contigs. Possible options: muscle, mafft, mummer (= nucmer), set to muscle for default.",
cateogory: "advanced"
}
min_length_fraction: {
description: "This step will fail with a PoorAssemblyError if the total end-to-end genome length in the output genome (inclusive of interior Ns) is less than this fraction of the length of the reference genome selected. Valid values are fractions from 0 to 1, default value is 0.5.",
category: "common"
}
min_unambig: {
description: "This step will fail with a PoorAssemblyError if the total number of unambiguous bases in the output genome (exclusive of interior Ns) is less than this fraction of its end-to-end length (inclusive of interior Ns). Valid values are fractions from 0 to 1, default value is 0.5.",
category: "common"
}
replace_length: {
description: "The first and last replace_length base pairs of each segment in the output genome will be replaced with the equivalent sequences in the reference genome as a mechanism to handle common assembly errors in repetitive or inverted regions that are common to chromosome/segment ends. Valid values are any non-negative integer. Default is 55 bp.",
category: "advanced"
}
nucmer_max_gap: {
description: "When scaffolding contigs to the reference via nucmer, this specifies the -g parameter to nucmer (the maximum allowed gap between adjacent matches in a cluster). Our default is 200 (up from nucmer default of 90), mummer documentation suggests it is valid to increase up to 1000 to allow for more diversity.",
category: "advanced"
}
nucmer_min_match: {
description: "When scaffolding contigs to the reference via nucmer, this specifies the -l parameter to nucmer (the minimal size of a maximal exact match). Our default is 10 (down from nucmer default of 20) to allow for more divergence.",
category: "advanced"
}
nucmer_min_cluster:{
description: "When scaffolding contigs to the reference via nucmer, this specifies the -c parameter to nucmer (minimum cluster length). Our default is the nucmer default of 65 bp.",
category: "advanced"
}
scaffold_min_contig_len: {
description: "Any sequences in contigs_fasta that are shorter than this length will be ignored for scaffolding.",
category: "advanced"
}
scaffold_min_pct_contig_aligned: {
description: "Any contig alignments to the reference scaffold that account for less than this fraction of the contig's length will be rejected for scaffolding. Valid values are fractions from 0 to 1; the default value is 0.3.",
category: "advanced"
}
scaffold_fasta: {
description: "This is the output draft genome after scaffolding contigs to references and imputing missing sequence from those references. This resulting genome is a hybrid of sequences from the de novo assembly and imputed reference sequence, and *requires* polishing with reads to be considered a valid consensus sequence. This is the final output of this task that should be used for polishing.",
patterns: ["*.fasta"],
category: "other"
}
intermediate_scaffold_fasta: {
description: "This is the output draft genome after scaffolding contigs to reference genomes but prior to imputation with reference sequence or gapfilling with reads. The only unambiguous bases are from the contigs_fasta file.",
patterns: ["*.fasta"],
category: "other"
}
}
Int disk_size = 375
command {
set -ex -o pipefail
# find 90% memory
mem_in_gb=$(/opt/viral-ngs/source/docker/calc_mem.py gb 90)
assembly.py --version | tee VERSION
# use skani to choose top hit
assembly.py skani_contigs_to_refs \
"~{contigs_fasta}" \
"~{sep='" "' reference_genome_fasta}" \
"~{sample_name}.refs_skani_dist.full.tsv" \
"~{sample_name}.refs_skani_dist.top.tsv" \
"~{sample_name}.ref_clusters.tsv" \
~{'-m ' + skani_m} \
~{'-s ' + skani_s} \
~{'-c ' + skani_c} \
--loglevel=DEBUG
# sometimes skani fails; if so, just fall-back to sending all refs downstream
if [[ $(wc -l <"~{sample_name}.refs_skani_dist.full.tsv") -ge 2 ]]; then
# skani reference selection worked: just try one reference
CHOSEN_REF_FASTA=$(cut -f 1 "~{sample_name}.refs_skani_dist.full.tsv" | tail +2 | head -1)
basename "$CHOSEN_REF_FASTA" .fasta > CHOSEN_REF_BASENAME
assembly.py order_and_orient \
"~{contigs_fasta}" \
"$CHOSEN_REF_FASTA" \
"~{sample_name}".intermediate_scaffold.fasta \
~{'--min_contig_len=' + scaffold_min_contig_len} \
~{'--maxgap=' + nucmer_max_gap} \
~{'--minmatch=' + nucmer_min_match} \
~{'--mincluster=' + nucmer_min_cluster} \
~{'--min_pct_contig_aligned=' + scaffold_min_pct_contig_aligned} \
--outReference "~{sample_name}".scaffolding_chosen_ref.fasta \
--outStats "~{sample_name}".scaffolding_stats.txt \
--outAlternateContigs ~{sample_name}.scaffolding_alt_contigs.fasta \
~{true='--allow_incomplete_output' false="" allow_incomplete_output} \
--loglevel=DEBUG
cut -f 3 "~{sample_name}.refs_skani_dist.full.tsv" | tail +2 | head -1 > SKANI_ANI
cut -f 4 "~{sample_name}.refs_skani_dist.full.tsv" | tail +2 | head -1 > SKANI_REF_AF
cut -f 5 "~{sample_name}.refs_skani_dist.full.tsv" | tail +2 | head -1 > SKANI_CONTIGS_AF
else
# skani reference selection failed: try all references
echo "0" > SKANI_ANI
echo "0" > SKANI_REF_AF
echo "0" > SKANI_CONTIGS_AF
echo "" > CHOSEN_REF_BASENAME
assembly.py order_and_orient \
"~{contigs_fasta}" \
"~{sep='" "' reference_genome_fasta}" \
"~{sample_name}".intermediate_scaffold.fasta \
~{'--min_contig_len=' + scaffold_min_contig_len} \
~{'--maxgap=' + nucmer_max_gap} \
~{'--minmatch=' + nucmer_min_match} \
~{'--mincluster=' + nucmer_min_cluster} \
~{'--min_pct_contig_aligned=' + scaffold_min_pct_contig_aligned} \
--outReference "~{sample_name}".scaffolding_chosen_ref.fasta \
--outStats "~{sample_name}".scaffolding_stats.txt \
--outAlternateContigs ~{sample_name}.scaffolding_alt_contigs.fasta \
~{true='--allow_incomplete_output' false="" allow_incomplete_output} \
--loglevel=DEBUG
fi
grep '^>' "~{sample_name}".scaffolding_chosen_ref.fasta | cut -c 2- | cut -f 1 -d ' ' > "~{sample_name}".scaffolding_chosen_refs.txt
assembly.py gapfill_gap2seq \
"~{sample_name}".intermediate_scaffold.fasta \
"~{reads_bam}" \
"~{sample_name}".intermediate_gapfill.fasta \
--memLimitGb $mem_in_gb \
--maskErrors \
--loglevel=DEBUG
set +e +o pipefail
grep -v '^>' "~{sample_name}".intermediate_gapfill.fasta | tr -d '\n' | wc -c | tee assembly_preimpute_length
grep -v '^>' "~{sample_name}".intermediate_gapfill.fasta | tr -d '\nNn' | wc -c | tee assembly_preimpute_length_unambiguous
grep '^>' "~{sample_name}".intermediate_gapfill.fasta | wc -l | tee assembly_num_segments_recovered
grep '^>' "~{sample_name}".scaffolding_chosen_ref.fasta | wc -l | tee reference_num_segments_required
grep -v '^>' "~{sample_name}".scaffolding_chosen_ref.fasta | tr -d '\n' | wc -c | tee reference_length
set -e -o pipefail
if ~{true='true' false='false' allow_incomplete_output} && ! cmp -s assembly_num_segments_recovered reference_num_segments_required
then
# draft assembly does not have enough segments--and that's okay (allow_incomplete_output=true)
file_utils.py rename_fasta_sequences \
"~{sample_name}".intermediate_gapfill.fasta \
"~{sample_name}".scaffolded_imputed.fasta \
"~{sample_name}" --suffix_always --loglevel=DEBUG
else
# draft assembly must have the right number of segments (fail if not)
assembly.py impute_from_reference \
"~{sample_name}".intermediate_gapfill.fasta \
"~{sample_name}".scaffolding_chosen_ref.fasta \
"~{sample_name}".scaffolded_imputed.fasta \
--newName "~{sample_name}" \
~{'--replaceLength=' + replace_length} \
~{'--minLengthFraction=' + min_length_fraction} \
~{'--minUnambig=' + min_unambig} \
~{'--aligner=' + aligner} \
--loglevel=DEBUG
fi
}
output {
File scaffold_fasta = "~{sample_name}.scaffolded_imputed.fasta"
File intermediate_scaffold_fasta = "~{sample_name}.intermediate_scaffold.fasta"
File intermediate_gapfill_fasta = "~{sample_name}.intermediate_gapfill.fasta"
Int assembly_preimpute_length = read_int("assembly_preimpute_length")
Int assembly_preimpute_length_unambiguous = read_int("assembly_preimpute_length_unambiguous")
Int assembly_num_segments_recovered = read_int("assembly_num_segments_recovered")
Int reference_num_segments_required = read_int("reference_num_segments_required")
Int reference_length = read_int("reference_length")
Array[String] scaffolding_chosen_ref_names = read_lines("~{sample_name}.scaffolding_chosen_refs.txt")
String scaffolding_chosen_ref_basename = read_string("CHOSEN_REF_BASENAME")
File scaffolding_chosen_ref = "~{sample_name}.scaffolding_chosen_ref.fasta"
File scaffolding_stats = "~{sample_name}.refs_skani_dist.full.tsv"
File scaffolding_alt_contigs = "~{sample_name}.scaffolding_alt_contigs.fasta"
Float skani_ani = read_float("SKANI_ANI")
Float skani_ref_aligned_frac = read_float("SKANI_REF_AF")
Float skani_contigs_aligned_frac = read_float("SKANI_CONTIGS_AF")
String viralngs_version = read_string("VERSION")
}
runtime {
docker: docker
memory: select_first([machine_mem_gb, 63]) + " GB"
cpu: 4
disks: "local-disk " + disk_size + " LOCAL"
disk: disk_size + " GB" # TES
dx_instance_type: "mem1_ssd1_v2_x8"
maxRetries: 2
}
}
task ivar_trim {
meta {
description: "this runs ivar trim on aligned reads, which results in soft-clipping of alignments"
}
input {
File aligned_bam
File? trim_coords_bed
Int? min_keep_length
Int? sliding_window
Int? min_quality = 1
Int? primer_offset
Int? machine_mem_gb
String docker = "andersenlabapps/ivar:1.3.1"
String bam_basename=basename(aligned_bam, ".bam")
Int disk_size = 375
}
parameter_meta {
aligned_bam:{
description: "aligned reads in BAM format",
patterns: ["*.bam"],
category: "required"
}
trim_coords_bed:{
description: "optional primers to trim in reference coordinate space (0-based BED format)",
patterns: ["*.bed"],
category: "advanced"
}
min_keep_length:{
description: "Minimum length of read to retain after trimming (Default: 30)",
category: "advanced"
}
sliding_window: {
description: "Width of sliding window for quality trimming (Default: 4)",
category: "advanced"
}
min_quality: {
description: "Minimum quality threshold for sliding window to pass (Default: 20)",
category: "advanced"
}
}
command {
ivar version | head -1 | tee VERSION
if [ -f "~{trim_coords_bed}" ]; then
ivar trim -e \
~{'-b ' + trim_coords_bed} \
~{'-m ' + min_keep_length} \
~{'-s ' + sliding_window} \
~{'-q ' + min_quality} \
~{'-x ' + primer_offset} \
-i ~{aligned_bam} -p trim | tee IVAR_OUT
samtools sort -@ $(nproc) -m 1000M -o ~{bam_basename}.trimmed.bam trim.bam
else
echo "skipping ivar trim"
cp "~{aligned_bam}" "~{bam_basename}.trimmed.bam"
echo "Trimmed primers from 0% (0) of reads." > IVAR_OUT
fi
PCT=$(grep "Trimmed primers from" IVAR_OUT | perl -lape 's/Trimmed primers from (\S+)%.*/$1/')
if [[ $PCT = -* ]]; then echo 0; else echo $PCT; fi > IVAR_TRIM_PCT
grep "Trimmed primers from" IVAR_OUT | perl -lape 's/Trimmed primers from \S+% \((\d+)\).*/$1/' > IVAR_TRIM_COUNT
}
output {
File aligned_trimmed_bam = "~{bam_basename}.trimmed.bam"
Float primer_trimmed_read_percent = read_float("IVAR_TRIM_PCT")
Int primer_trimmed_read_count = read_int("IVAR_TRIM_COUNT")
String ivar_version = read_string("VERSION")
}
runtime {
docker: docker
memory: select_first([machine_mem_gb, 7]) + " GB"
cpu: 4
disks: "local-disk " + disk_size + " LOCAL"
disk: disk_size + " GB" # TES
dx_instance_type: "mem1_ssd1_v2_x4"
maxRetries: 2
}
}
task ivar_trim_stats {
input {
File ivar_trim_stats_tsv
String out_basename = "ivar_trim_stats"
String flowcell = ""
String docker = "quay.io/broadinstitute/py3-bio:0.1.2"
}
parameter_meta {
ivar_trim_stats_tsv: {
description: "Number of trimmed sequences based on a quality threshold set above.",
category: "required"
}
}
Int disk_size = 50
command <<<
set -e
python3<<CODE
import json
import pandas as pd
import plotly.express as px
# load and clean up data
df = pd.read_csv("~{ivar_trim_stats_tsv}", delimiter='\t',
names=['file', 'trim_percent', 'trim_count'])
# make plot
flowcell = "~{flowcell}"
title = "ivar trim: % vs # of reads trimmed per sample"
if flowcell:
title += " ({})".format(flowcell)
p = px.scatter(df,
x='trim_count', y='trim_percent',
title=title,
opacity=0.7,
hover_data=df.columns)
# export
out_basename = "~{out_basename}"
df.to_csv(out_basename + ".txt", sep='\t')
p.write_html(out_basename + ".html")
p.write_image(out_basename + ".png")
CODE
>>>
output {
File trim_stats_html = "~{out_basename}.html"
File trim_stats_png = "~{out_basename}.png"
File trim_stats_tsv = "~{out_basename}.txt"
}
runtime {
docker: docker
memory: "1 GB"
cpu: 1
disks: "local-disk " + disk_size + " HDD"
disk: disk_size + " GB"
dx_instance_type: "mem1_ssd1_v2_x2"
maxRetries: 2
}
}
task align_reads {
meta {
description: "Align unmapped reads to a reference genome, either using novoalign (default), minimap2, or bwa. Produces an aligned bam file (including all unmapped reads), an aligned-only bam file, both sorted and indexed, along with samtools flagstat output, fastqc stats (on mapped only reads), and some basic figures of merit."
}
input {
File reference_fasta
File reads_unmapped_bam
File? novocraft_license
String aligner = "minimap2"
String? aligner_options
Boolean skip_mark_dupes = false
Int? machine_mem_gb
String docker = "quay.io/broadinstitute/viral-core:2.5.1"
String sample_name = basename(basename(basename(reads_unmapped_bam, ".bam"), ".taxfilt"), ".clean")
}
Int disk_size = 375
parameter_meta {
reference_fasta: {
description: "Reference genome, in FASTA format, pre-indexed by Novoindex",
category: "required"
}
reads_unmapped_bam: {
description: "Unaligned reads in BAM format.",
category: "required"
}
aligner: {
description: "Short read aligner to use novoalign, minimap2, or bwa. (Default novoalign)",
category: "advanced"
}
skip_mark_dupes: {
description: "If specific, duplicate reads will not be marked in the resulting output file.",
category: "advanced"
}
}
command <<<
set -ex # do not set pipefail, since grep exits 1 if it can't find the pattern
read_utils.py --version | tee VERSION
mem_in_mb=$(/opt/viral-ngs/source/docker/calc_mem.py mb 90)
cp "~{reference_fasta}" assembly.fasta
grep -v '^>' assembly.fasta | tr -d '\n' | wc -c | tee assembly_length
if [ "$(cat assembly_length)" != "0" ]; then
# only perform the following if the reference is non-empty
if [ "~{aligner}" == "novoalign" ]; then
read_utils.py novoindex \
assembly.fasta \
~{"--NOVOALIGN_LICENSE_PATH=" + novocraft_license} \
--loglevel=DEBUG
fi
read_utils.py index_fasta_picard assembly.fasta --loglevel=DEBUG
read_utils.py index_fasta_samtools assembly.fasta --loglevel=DEBUG
read_utils.py align_and_fix \
"~{reads_unmapped_bam}" \
assembly.fasta \
--outBamAll "~{sample_name}.all.bam" \
--outBamFiltered "~{sample_name}.mapped.bam" \
--aligner ~{aligner} \
~{'--aligner_options "' + aligner_options + '"'} \
~{true='--skipMarkDupes' false="" skip_mark_dupes} \
--JVMmemory "$mem_in_mb"m \
~{"--NOVOALIGN_LICENSE_PATH=" + novocraft_license} \
--loglevel=DEBUG
else
# handle special case of empty reference fasta -- emit empty bams (with original bam headers)
samtools view -H -b "~{reads_unmapped_bam}" > "~{sample_name}.all.bam"
samtools view -H -b "~{reads_unmapped_bam}" > "~{sample_name}.mapped.bam"
samtools index "~{sample_name}.all.bam" "~{sample_name}.all.bai"
samtools index "~{sample_name}.mapped.bam" "~{sample_name}.mapped.bai"
fi
cat /proc/loadavg > CPU_LOAD
# collect figures of merit
grep -v '^>' assembly.fasta | tr -d '\nNn' | wc -c | tee assembly_length_unambiguous
samtools view -c "~{reads_unmapped_bam}" | tee reads_provided
samtools view -c "~{sample_name}.mapped.bam" | tee reads_aligned
# report only primary alignments 260=exclude unaligned reads and secondary mappings
samtools view -h -F 260 "~{sample_name}.all.bam" | samtools flagstat - | tee ~{sample_name}.all.bam.flagstat.txt
grep properly "~{sample_name}.all.bam.flagstat.txt" | cut -f 1 -d ' ' | tee read_pairs_aligned
samtools view "~{sample_name}.mapped.bam" | cut -f10 | tr -d '\n' | wc -c | tee bases_aligned
python -c "print (float("$(cat bases_aligned)")/"$(cat assembly_length_unambiguous)") if "$(cat assembly_length_unambiguous)">0 else print(0)" > mean_coverage
# fastqc mapped bam
reports.py fastqc ~{sample_name}.mapped.bam ~{sample_name}.mapped_fastqc.html --out_zip ~{sample_name}.mapped_fastqc.zip
cat /proc/uptime | cut -f 1 -d ' ' > UPTIME_SEC
{ if [ -f /sys/fs/cgroup/memory.peak ]; then cat /sys/fs/cgroup/memory.peak; elif [ -f /sys/fs/cgroup/memory/memory.peak ]; then cat /sys/fs/cgroup/memory/memory.peak; elif [ -f /sys/fs/cgroup/memory/memory.max_usage_in_bytes ]; then cat /sys/fs/cgroup/memory/memory.max_usage_in_bytes; else echo "0"; fi } > MEM_BYTES
>>>
output {
File aligned_bam = "~{sample_name}.all.bam"
File aligned_bam_idx = "~{sample_name}.all.bai"
File aligned_bam_flagstat = "~{sample_name}.all.bam.flagstat.txt"
File aligned_only_reads_bam = "~{sample_name}.mapped.bam"
File aligned_only_reads_bam_idx = "~{sample_name}.mapped.bai"
File aligned_only_reads_fastqc = "~{sample_name}.mapped_fastqc.html"
File aligned_only_reads_fastqc_zip = "~{sample_name}.mapped_fastqc.zip"
Int reference_length = read_int("assembly_length")
Int reads_provided = read_int("reads_provided")
Int reads_aligned = read_int("reads_aligned")
Int read_pairs_aligned = read_int("read_pairs_aligned")
Float bases_aligned = read_float("bases_aligned")
Float mean_coverage = read_float("mean_coverage")
Int max_ram_gb = ceil(read_float("MEM_BYTES")/1000000000)
Int runtime_sec = ceil(read_float("UPTIME_SEC"))
String cpu_load = read_string("CPU_LOAD")
String viralngs_version = read_string("VERSION")
}
runtime {
docker: docker
memory: select_first([machine_mem_gb, 15]) + " GB"
cpu: 8
disks: "local-disk " + disk_size + " LOCAL"
disk: disk_size + " GB" # TES
dx_instance_type: "mem1_ssd1_v2_x8"
preemptible: 1
maxRetries: 2
}
}
task refine_assembly_with_aligned_reads {
meta {
description: "This step refines/polishes a genome based on short read alignments, producing a new consensus genome. Uses GATK3 Unified Genotyper to produce new consensus. Produces new genome (fasta), variant calls (VCF), and figures of merit."
}
input {
File reference_fasta
File reads_aligned_bam
String out_basename = basename(reads_aligned_bam, '.bam')
String sample_name = out_basename
Boolean mark_duplicates = false
Float major_cutoff = 0.5
Int min_coverage = 3
Int machine_mem_gb = 15
String docker = "quay.io/broadinstitute/viral-assemble:2.5.1.0"
}
Int disk_size = 375
parameter_meta {
reference_fasta:{
description: "Reference genome, in FASTA format, pre-indexed by Novoindex",
category: "required"
}
reads_aligned_bam: {
description: "Aligned reads in BAM format.",
patterns: ["*.bam"],
category: "required"
}
mark_duplicates:{
description: "Instead of removing duplicates, simply marks them.",
category: "advanced"
}
major_cutoff: {
description: "If the major allele is present at a frequency higher than this cutoff, we will call an unambiguous base at that position. If it is equal to or below this cutoff, we will call an ambiguous base representing all possible alleles at that position.",
category: "advanced"
}
min_coverage: {
description: "Minimum read coverage required to call a position unambiguous.",
category: "advanaced"
}
}
command <<<
set -ex -o pipefail
# find 90% memory
mem_in_mb=$(/opt/viral-ngs/source/docker/calc_mem.py mb 90)
assembly.py --version | tee VERSION
if [ ~{true='true' false='false' mark_duplicates} == "true" ]; then
read_utils.py mkdup_picard \
~{reads_aligned_bam} \
temp_markdup.bam \
--JVMmemory "$mem_in_mb"m \
--loglevel=DEBUG
else
ln -s ~{reads_aligned_bam} temp_markdup.bam
fi
samtools index -@ $(nproc) temp_markdup.bam temp_markdup.bai
ln -s ~{reference_fasta} assembly.fasta
assembly.py refine_assembly \
assembly.fasta \
temp_markdup.bam \
refined.fasta \
--already_realigned_bam=temp_markdup.bam \
--outVcf "~{out_basename}.sites.vcf.gz" \
--min_coverage ~{min_coverage} \
--major_cutoff ~{major_cutoff} \
--JVMmemory "$mem_in_mb"m \
--loglevel=DEBUG
# trim edges if they're too ambiguous or else table2asn will reject if first or last line of seq > 40% ambig
# (we don't really know how long the last line will be so use both the --ten and --fifty rules
# and basically disable the --maxfrac rule as we will handle that elsewhere)
if [ -s refined.fasta ]; then
fasta-trim-terminal-ambigs.pl --3rules \
--ten 4 \
--fifty 15 \
--maxfrac 0.9 \
refined.fasta > trimmed.fasta
else
# VADR perl script fails on empty input
touch trimmed.fasta
fi
# rename for external consumption
file_utils.py rename_fasta_sequences \
trimmed.fasta "~{out_basename}.fasta" "~{sample_name}"
# collect variant counts
if (( $(cat trimmed.fasta | wc -l) > 1 )); then
bcftools filter -e "FMT/DP<~{min_coverage}" -S . "~{out_basename}.sites.vcf.gz" -Ou | bcftools filter -i "AC>1" -Ou > "~{out_basename}.diffs.vcf"
bcftools filter -i 'TYPE="snp"' "~{out_basename}.diffs.vcf" | bcftools query -f '%POS\n' | wc -l | tee num_snps
bcftools filter -i 'TYPE!="snp"' "~{out_basename}.diffs.vcf" | bcftools query -f '%POS\n' | wc -l | tee num_indels
else
# empty output
echo "0" > num_snps
echo "0" > num_indels
cp "~{out_basename}.sites.vcf.gz" "~{out_basename}.diffs.vcf"
fi
# collect figures of merit
set +o pipefail # grep will exit 1 if it fails to find the pattern
grep -v '^>' trimmed.fasta | tr -d '\n' | wc -c | tee assembly_length
grep -v '^>' trimmed.fasta | tr -d '\nNn' | wc -c | tee assembly_length_unambiguous
>>>
output {
File refined_assembly_fasta = "~{out_basename}.fasta"
File sites_vcf_gz = "~{out_basename}.sites.vcf.gz"
Int assembly_length = read_int("assembly_length")
Int assembly_length_unambiguous = read_int("assembly_length_unambiguous")
Int dist_to_ref_snps = read_int("num_snps")
Int dist_to_ref_indels = read_int("num_indels")
String viralngs_version = read_string("VERSION")
}
runtime {
docker: docker
memory: machine_mem_gb + " GB"
cpu: 8
disks: "local-disk " + disk_size + " LOCAL"
disk: disk_size + " GB" # TES
dx_instance_type: "mem1_ssd1_v2_x8"
maxRetries: 2
}
}
task run_discordance {
meta {
description: "This step evaluates discordance between sequencing runs of the same sample. The input is a merged, aligned BAM file for a single sample. If multiple runs (read groups) exist, we split the aligned reads by read group and separately evaluate consensus calls per read group using bcftools mpileup and call. A VCF is emitted that describes variation between runs."
}
input {
File reads_aligned_bam
File reference_fasta
String out_basename = "run"
Int min_coverage = 4
String docker = "quay.io/broadinstitute/viral-core:2.5.1"
}
parameter_meta {
reads_aligned_bam: {
description: "Unaligned reads in BAM Format",
category: "required"
}
reference_fasta: {
description: "Reference assembled genome in FASTA format ",
category: "required"
}
discordant_sites_vcf:{
description:"The SNPs between runs of the same sample. ",
category: "other"
}
}
Int disk_size = 100
command {
set -ex -o pipefail
read_utils.py --version | tee VERSION
python3 <<CODE
# create 2-col table with read group ids in both cols
import tools.samtools
header = tools.samtools.SamtoolsTool().getHeader("~{reads_aligned_bam}")
rgids = [[x[3:] for x in h if x.startswith('ID:')][0] for h in header if h[0]=='@RG']
n_rgs = len(rgids)
with open('readgroups.txt', 'wt') as outf:
for rg in rgids:
outf.write(rg+'\t'+rg+'\n')
n_lbs = len(set([[x[3:] for x in h if x.startswith('LB:')][0] for h in header if h[0]=='@RG']))
with open('num_read_groups', 'wt') as outf:
outf.write(str(n_rgs)+'\n')
with open('num_libraries', 'wt') as outf:
outf.write(str(n_lbs)+'\n')
# detect empty fasta situation and manually create empty VCF
import os.path
if (os.path.getsize('~{reference_fasta}') == 0):
sample_name = [[x[3:] for x in h if x.startswith('SM:')][0] for h in header if h[0]=='@RG'][0]
with open('everything.vcf', 'wt') as outf:
outf.write('##fileformat=VCFv4.3')
outf.write('##ALT=<ID=*,Description="Represents allele(s) other than observed.">')
outf.write('##INFO=<ID=DP,Number=1,Type=Integer,Description="Raw read depth">')
outf.write('##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">')
outf.write('##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Number of high-quality bases">')
outf.write('\t'.join(('#CHROM','POS','ID','REF','ALT','QUAL','FILTER','INFO','FORMAT',sample_name))+'\n')
CODE
if [ ! -f everything.vcf ]; then
# bcftools call snps while treating each RG as a separate sample
# first index the ref fasta, iff it contains non-N sequence
if [ $(grep -v '^>' "~{reference_fasta}" | tr -d '\nNn' | wc -c) != "0" ]; then
samtools faidx "~{reference_fasta}"
fi
bcftools mpileup \
-G readgroups.txt -d 10000 -a "FORMAT/DP,FORMAT/AD" \
-q 1 -m 2 -Ou \
-f "~{reference_fasta}" "~{reads_aligned_bam}" \
| bcftools call \
-P 0 -m --ploidy 1 \
--threads $(nproc) \
-Ov -o everything.vcf
# mask all GT calls when less than 3 reads
cat everything.vcf | bcftools filter -e "FMT/DP<~{min_coverage}" -S . > filtered.vcf
cat filtered.vcf | bcftools filter -i "MAC>0" > "~{out_basename}.discordant.vcf"
# tally outputs
bcftools filter -i 'MAC=0' filtered.vcf | bcftools query -f '%POS\n' | wc -l | tee num_concordant
bcftools filter -i 'TYPE="snp"' "~{out_basename}.discordant.vcf" | bcftools query -f '%POS\n' | wc -l | tee num_discordant_snps
bcftools filter -i 'TYPE!="snp"' "~{out_basename}.discordant.vcf" | bcftools query -f '%POS\n' | wc -l | tee num_discordant_indels
else
# handle empty case
cp everything.vcf "~{out_basename}.discordant.vcf"
echo 0 > num_concordant
echo 0 > num_discordant_snps
echo 0 > num_discordant_indels
fi
}
output {
File discordant_sites_vcf = "~{out_basename}.discordant.vcf"
Int concordant_sites = read_int("num_concordant")
Int discordant_snps = read_int("num_discordant_snps")
Int discordant_indels = read_int("num_discordant_indels")
Int num_read_groups = read_int("num_read_groups")
Int num_libraries = read_int("num_libraries")
String viralngs_version = read_string("VERSION")
}
runtime {
docker: docker
memory: "3 GB"
cpu: 2
disks: "local-disk " + disk_size + " HDD"
disk: disk_size + " GB" # TES
dx_instance_type: "mem1_ssd1_v2_x2"
preemptible: 1
maxRetries: 2
}
}
task filter_bad_ntc_batches {
meta {
description: "Identify NTCs (negative control libraries) that assemble too much of a genome and fail all other genomes from the same library prep batch."
}
input {
File seqid_list
File demux_meta_by_sample_json
File assembly_meta_tsv
Int ntc_min_unambig
File? genome_status_json
}
parameter_meta {
seqid_list:{
description: "List of sequence ID tags for orginal samples.",
category: "required"
}
demux_meta_by_sample_json: {
description: "JSON file that specifies demux meta",
cateogry: "required"
}
assembly_meta_tsv: {
description: "File containing list of assembled reads in table format",
category: "required"
}
}
Int disk_size = 50
command <<<
set -e
python3<<CODE
import csv
import json
# load inputs
ntc_min_unambig = ~{ntc_min_unambig}
with open('~{seqid_list}', 'rt') as inf:
seqid_list = list(x.strip() for x in inf)
num_provided = len(seqid_list)
with open('~{demux_meta_by_sample_json}', 'rt') as inf:
demux_meta_orig = json.load(inf)
with open('~{assembly_meta_tsv}', 'rt') as inf:
assembly_meta = list(csv.DictReader(inf, delimiter='\t'))
genome_status_json = '~{default="" genome_status_json}'
if genome_status_json:
with open(genome_status_json, 'rt') as inf:
fail_meta = json.load(inf)
else:
fail_meta = {}
# re-index demux_meta lookup table by sample_original instead of sample_sanitized
demux_meta = dict((v['sample_original'],v) for k,v in demux_meta_orig.items())
# identify bad NTCs
reject_lanes = set()
reject_batches = set()
for sample in assembly_meta:
if (demux_meta[sample['sample']].get('control') == 'NTC'):
bad_ntc = sample['assembly_length_unambiguous'] \
and (int(sample['assembly_length_unambiguous']) >= ntc_min_unambig)
id = sample['sample']
lane = demux_meta[sample['sample']]['run'].split('.')[-1]
batch = demux_meta[sample['sample']].get('batch_lib','')
print(f"NTC:\t{id}\t{sample['assembly_length_unambiguous']}\t{bad_ntc}\t{lane}\t{batch}")
if bad_ntc:
if batch:
reject_batches.add(batch)
else:
reject_lanes.add(lane)
print(f"BAD BATCHES:\t{','.join(reject_batches)}")
print(f"BAD LANES:\t{','.join(reject_lanes)}")
# filter samples from bad batches/lanes
fail_meta = {}
fails = set()
for sample in assembly_meta:
id = sample['sample']
if (demux_meta[id].get('batch_lib') in reject_batches) \
or (demux_meta[id]['run'].split('.')[-1] in reject_lanes):
fail_meta[id] = 'failed_NTC'
fails.add(id)
seqid_list = list(id for id in seqid_list if id not in fails)
# write outputs
with open('seqids.filtered.txt', 'wt') as outf:
for id in seqid_list:
outf.write(id+'\n')
with open('NUM_PROVIDED', 'wt') as outf:
outf.write(str(num_provided)+'\n')
with open('NUM_KEPT', 'wt') as outf:
outf.write(str(len(seqid_list))+'\n')
with open('REJECT_BATCHES', 'wt') as outf:
for x in sorted(reject_batches):
outf.write(x+'\n')
with open('REJECT_LANES', 'wt') as outf:
for x in sorted(reject_lanes):
outf.write(x+'\n')
with open('genome_status.json', 'wt') as outf:
json.dump(fail_meta, outf, indent=2)
CODE
>>>
runtime {
docker: "python:slim"
memory: "2 GB"
cpu: 1
disks: "local-disk " + disk_size + " HDD"
disk: disk_size + " GB" # TES
dx_instance_type: "mem1_ssd1_v2_x2"
maxRetries: 2
}
output {
File seqids_kept = "seqids.filtered.txt"
Int num_provided = read_int("NUM_PROVIDED")
Int num_kept = read_int("NUM_KEPT")
Array[String] reject_batches = read_lines("REJECT_BATCHES")
Array[String] reject_lanes = read_lines("REJECT_LANES")
File fail_meta_json = "genome_status.json"
}
}
task wgsim {
meta {
description: "Generate synthetic Illumina paired-end reads from reference sequences using wgsim via assembly.py simulate_illumina_reads."
}
input {
String coverage_string
File reference_fasta
File? coverage_bed
String out_basename = "simulated_reads"
Int? read_length
Int? outer_distance
Float? mutation_rate
Float? indel_fraction
Float? indel_extend_probability
Int? random_seed
Int machine_mem_gb = 7
String docker = "quay.io/broadinstitute/viral-assemble:2.5.1.0"
}
parameter_meta {
coverage_string: {
description: "Either a simple coverage value (e.g., '10X') or a space-separated string of colon-separated pairs where each pair consists of a GenBank accession and a coverage value (e.g., 'KJ660346.2:12.5x NC_004296.1:0.9X'). Ignored if coverage_bed is provided.",
category: "required"
}
reference_fasta: {
description: "Reference genome sequences in FASTA format from which to generate reads.",
patterns: ["*.fasta"],
category: "required"
}
coverage_bed: {
description: "Optional BED file specifying coverage per region. If provided, this overrides coverage_string.",
patterns: ["*.bed"],
category: "advanced"
}
read_length: {
description: "Length of simulated reads (default: 150bp).",
category: "advanced"
}
outer_distance: {
description: "Outer distance between paired reads (default: 500bp).",
category: "advanced"
}
mutation_rate: {
description: "Base mutation rate (default: 0.001).",
category: "advanced"
}
indel_fraction: {
description: "Fraction of mutations that are indels (default: 0.15).",
category: "advanced"
}
indel_extend_probability: {
description: "Probability an indel is extended (default: 0.3).",
category: "advanced"
}
random_seed: {
description: "Random seed for reproducibility.",
category: "advanced"
}
}
Int disk_size = 100
command <<<
set -e
assembly.py --version | tee VERSION
# Run simulate_illumina_reads
assembly.py simulate_illumina_reads \
"~{reference_fasta}" \
"~{out_basename}.bam" \
~{if defined(coverage_bed) then '--coverage_bed "' + coverage_bed + '"' else '"' + coverage_string + '"'} \
~{'--read_length ' + read_length} \
~{'--outer_distance ' + outer_distance} \
~{'--mutation_rate ' + mutation_rate} \
~{'--indel_fraction ' + indel_fraction} \
~{'--indel_extend_probability ' + indel_extend_probability} \
~{'--random_seed ' + random_seed} \
--loglevel=DEBUG
# Count reads in output BAM
samtools view -c "~{out_basename}.bam" | tee READ_COUNT
>>>
output {
File simulated_reads_bam = "~{out_basename}.bam"
Int read_count = read_int("READ_COUNT")
String viralngs_version = read_string("VERSION")
}
runtime {
docker: docker
memory: machine_mem_gb + " GB"
cpu: 2
disks: "local-disk " + disk_size + " HDD"
disk: disk_size + " GB" # TES
dx_instance_type: "mem1_ssd1_v2_x2"
maxRetries: 2
}
}